Assignment 2 – The Design of Digital Systems

Introduction

It was my task to design and create working prototypes of seven segment display and a synchronous sequence generator to accomplish these tasks I will work out the truth tables of the systems and from there calculate the necessary K maps of the system. I will then go on to using a Electronic Computer Aided Design Package (CAD) called Electronics Workbench (EWB) this helped me test the circuit with minimal cost and allow me to alter the circuit without loosing the original copy and also being capable of testing the circuit using the packages included to verify that I have created are correct.
Task 1
Introduction to Task 1
Aim: I have been given the task to design part of a seven-segment display. There are three inputs into the system that will comprise of a three bit binary number ‘ABC’. Only input s0 through 5 will be necessary to be displayed correctly. With a prototype with two LED’s on the seven segment display being worked these will be LED’s C and E.
Methodology

[image: image3.wmf]Upper Case

inputs

Lower Case

outputs

0

Low

1

High

d

don't care

Key to Truth Tables and K

Maps

I had begun designing the circuit by creating a truth table with the inputs ‘ABC’ with A as the most significant bit (msb) and C as the least significant bit (lsb). The outputs of the circuit being the Light Emitting Diodes (LED’s), ‘a,b,c,d,e,f,g,’ and then filled in the binary definitions on whether the LED on each part of seven-segment display would be needed to be on at the values between zero and five.

	Number
	Binary Inputs To System
	Binary Outputs To System

	
	A
	B
	C
	a
	b
	c
	d
	e
	f
	g

	0
	0
	0
	0
	1
	1
	1
	1
	1
	1
	0

	1
	0
	0
	1
	0
	1
	1
	0
	0
	0
	0

	2
	0
	1
	0
	1
	1
	0
	1
	1
	0
	1

	3
	0
	1
	1
	1
	1
	1
	1
	0
	0
	1

	4
	1
	0
	0
	0
	1
	1
	0
	0
	1
	1

	5
	1
	0
	1
	1
	0
	1
	1
	0
	1
	1

	6
	1
	1
	0
	d
	d
	d
	d
	d
	d
	d

	7
	1
	1
	1
	d
	d
	d
	d
	d
	d
	d

Figure 1.1 Truth Table of a Seven-segment display

The truth table‘s collected data was the used to generate K maps for the two LED’s that were to be designed and after filling in the values I grouped the ‘1’ together and where necessary with ‘d’ (don’t cares) to simplify the circuit this enabled me to then derive an accurate simplified Boolean expression that led me to conclude which appropriate logic gate sequence would be required, this gave me combinations of AND, NOT and OR gates.

	LED c
	
	A, B
	
	
	

	
	
	0,0
	0,1
	1,1
	1,0

	C
	0
	1
	0
	d
	1

	
	1
	1
	1
	d
	1

	
	
	
	
	
	

	
	LED c =
	B' + C
	
	

	
	
	
	
	
	

	LED e
	
	A, B
	
	
	

	
	
	0,0
	0,1
	1,1
	1,0

	C
	0
	1
	1
	d
	0

	
	1
	0
	0
	d
	0

	
	
	
	
	
	

	
	LED e =
	A'C'
	
	

Figure1.2 Minimised Boolean Expressions

This information collected enabled me to draw on paper a simplified circuit of the real one that acted as a good reference while building in EWB. This was done first with logic gates (appendix a) and then it was design from scratch replacing the logic gates with real types of components (appendix b), which would resemble what would be present it the real circuit. After I prepared this circuit I printed a copy of it out and used the information on it as a reference at to how to build the prototype. To construct the circuit I used an AP Powerace 102 and breadboard to build the circuit for real on a test bed. I deliberately kept the wire lengths short as possible and colour coded with positive inputs being red and ground black also each type of input to system had its own colour so that clear identification of what I thought the circuit was achieving could be made by me or someone else who came along later who might need to alter the circuit in some way.
The seven segment display could also be created without the use of more then on ‘NOT’ gate replacing the logic gates with a multiplexer. This can be done quickly and cheaply without the need to use K maps as its solution has Boolean expressions that can be derived directly from the truth table, this accomplished through grouping the first row with the second where inputs A and B are the same and C is different. The output for that LED would be matched up toC if it is the same as C 0,1 then C is the input, (1,0) has input not C and 1,1 and 0,0 gives out a 0.

For this system there is three inputs therefore a 2-4 multiplexer will need to be used. Worked out by subtracting 1 from the inputs then need for c as the second statement. The final design can be seen in appendix c.
Testing

The problem of static hazards are caused when the system is where a single input value is changed causing a momentary change in the output of the system before becoming the same output value as it stated with, caused by delays in the logic gates.

The time period in which this problem could occur would be only in the nanoseconds during the change over.

A static hazard can be detected on an oscilloscope when the circuit is operational and will show a horizontal line to the out put value normal value which can be seen in the circuit I have designed.

To solve the problems of these static hazards I will need to refer back to the K maps which gave me the minimised Boolean values for the circuit and loop all the gaps between loops grouping them together and this will eliminate the glitch. Generally if all the 1’s are grouped together then the 0’s should automatically be in sorted as well.

To test if my circuit is outputting at the right values to the inputted variables I can attach a Logic analyser to the circuit with the three inputs and one of the outputs of the system attached and from this I can generate the truth table for the circuit and using this truth table I can match it up to the one in my original design and see if the values I have are correct. I know that I will need to go back and check my K-map solutions or my circuit has the right components.

Figure 1.3 Logic Converter for Outputs ‘C’ and ‘E’ LED’s.
Another way of generating the circuit can be done by applying the truth table directly into the Logic Converter that would be able to convert these values into the appropriate logic gates required using by solving the circuit to a simplified Boolean expression for the circuit. As a secondary way of testing the system I could use a word generator to go through the sequence in order of 1-5 and see the outputs of the system are correct.

	Number
	Binary Inputs To System
	Binary Outputs To System

	
	A
	B
	C
	c
	E

	6
	1
	1
	0
	0
	0

	7
	1
	1
	1
	1
	0

Figure 1.4 The Results of the Circuit when in states 6, 7.
The next stage was to actually test a working prototype of the circuit by matching up the inputted various binary inputs to the checking them against the corresponding outputs that were to be expected in the truth tables derived at the beginning of the design process. If the values were incorrect I would check first all the connections of the wires and then move on if that was not the case for not working to making sure all the right connections had been completed.
Conclusion

There were several problems that I encountered over the course of designing and constructing the prototype circuit for this project, the first thing that I noticed was when using large truth tables it can become difficult to read as the 1,0, d states can be very easily mistakenly be written in wrong and are prone to errors of misreading the information stored in them. The way I overcome this problem was by the simple use of a ruler to mark the row or column that I was currently in need of analysis.
Inconvenience was also caused with connections becoming loose when building the prototype up of the seven-segment display, as well I discovered that all the outputs to the LED’s on the seven-segment display came out back to front due to the unit being active low instead of positive, therefore on the outputs a not gate was placed so that the correct results came out of the circuit as it was activating and deactivating the circuit at opposite times compared to the EWB design.

A full working prototype of this circuit counting zero to five could be made with all the LED lights present could be made which I did in EWB (appendix f and g) or with multiplexers for this to occur through all the K maps will need to be completed, however this will take a great deal of time to accomplish. Another alternative is that I could design the circuit so that it can be able to count zero to seven since there is a maximum of eight different mixtures available on a three input system.

Task 2

Introduction to Task 2

Aim: A controlled synchronous sequence generator is to be designed and built in th CAD package EWB. It will contain one control line ‘z’ which will cause the sequence to progress through pattern in one direction or the other depending on whther this state is high or low. The circuit should also include T type flip flops within the construction of the design.
Methodology

Figure 2.1 The state diagram for the system.
To create the counter I generated the state table (Figure 2.2) derived from the provided state diagram(Figure 2.1) of the system so that I could have a place with all the values with in it, including present, next and toggles needed to complete change. Using this table I was able to derive the K maps necessary to calculate the Boolean expressions involved in the creation of the circuit.
	Present State
	Control State
	Next State
	Toggle State

	c
	B
	A
	Z
	C
	B
	A
	Tc
	Tb
	Ta

	0
	0
	0
	0
	0
	1
	1
	0
	1
	1

	0
	0
	0
	1
	1
	0
	0
	1
	0
	0

	0
	0
	1
	0
	d
	d
	d
	d
	d
	d

	0
	0
	1
	1
	d
	d
	d
	d
	d
	d

	0
	1
	0
	0
	1
	0
	0
	1
	1
	0

	0
	1
	0
	1
	1
	0
	1
	1
	1
	1

	0
	1
	1
	0
	1
	0
	1
	1
	1
	0

	0
	1
	1
	1
	0
	0
	0
	0
	1
	1

	1
	0
	0
	0
	0
	0
	0
	1
	0
	0

	1
	0
	0
	1
	0
	1
	0
	1
	1
	0

	1
	0
	1
	0
	0
	1
	0
	1
	1
	1

	1
	0
	1
	1
	0
	1
	1
	1
	1
	0

	1
	1
	0
	0
	d
	d
	d
	d
	d
	d

	1
	1
	0
	1
	d
	d
	d
	d
	d
	d

	1
	1
	1
	0
	d
	d
	d
	d
	d
	d

	1
	1
	1
	1
	d
	d
	d
	d
	d
	d

Figure 2.2 State Table of the Counter Circuit.

	
	
	
	
	
	

	
	
	
	C,B
	
	

	
	
	0,0
	0,1
	1,1
	1,0

	
	0,0
	0
	1
	d
	1

	A,Z
	0,1
	1
	1
	d
	1

	
	1,1
	d
	0
	d
	1

	
	1,0
	d
	1
	d
	1

	
	
	
	
	
	

	
	Tc =
	A'Z + BZ' + C
	

	
	
	
	
	
	

	
	
	
	C,B
	
	

	
	
	0,0
	0,1
	1,1
	1,0

	
	0,0
	1
	1
	d
	0

	A,Z
	0,1
	0
	1
	d
	1

	
	1,1
	d
	1
	d
	1

	
	1,0
	d
	1
	d
	1

	
	
	
	
	
	

	
	Tb =
	AC + B + CZ + CZ'
	
	

	
	
	
	
	
	

	
	
	
	C,B
	
	

	
	
	0,0
	0,1
	1,1
	1,0

	
	0,0
	1
	0
	d
	0

	A,Z
	0,1
	0
	1
	d
	0

	
	1,1
	D
	1
	d
	0

	
	1,0
	D
	0
	d
	1

	
	
	
	
	
	

	
	Ta =
	B'C'Z' + BZ + ACZ'
	
	

Figure 2.3 The K Mapping and Boolean Expression for the Counter Circuit.

Due to the component of a Toggle not existing in EWB I had to choose on whether to have D or JK types within the circuit layout. In D types this done by connecting the Q’ to the Q values in JK it evolves the connection of both incoming values to the J and the K. In this project I decided to use the latter component (appendix d).

Testing

In counting in a loop dangerous use of don’t cares as the don’t’ cares could loop back in themselves so infinitely going round in a circle and staying at the same value. Therefore to test whether or not there is any problems the don’t cares of the system need to be checked although they should not get into these states in the real world there is always this possibility so by making sure the values outside the loop output a value that enables it to fall back into the loop the counter becomes stable.

	Unused State
	Control State
	Toggle State
	Next State

	A
	B
	C
	Z
	Tc
	Tb
	Ta
	A
	B
	C

	0
	0
	1
	0
	0
	1
	1
	0
	1
	0

	0
	0
	1
	1
	0
	0
	1
	0
	0
	0

	1
	1
	0
	0
	1
	1
	0
	0
	0
	0

	1
	1
	0
	1
	1
	1
	0
	0
	0
	0

	1
	1
	1
	0
	1
	1
	0
	0
	0
	1

	1
	1
	1
	1
	1
	1
	1
	0
	0
	0

Figure 2.4 The unused states of the system

The 001 state with a control 1, will not be able to loop back into the main loop until the control is altered to 0.
Figure 2.5 Full State Diagram of the System.
Conclusion

To improve on this design it may be easier with the counter up to five in binary, this would enable a user of the circuit design to be able to understand the workings of this system making it less complex. Although this problem may cause more difficulty in maintaining don’t care values that are not used.

Overall Conclusion

Since the counter has been designed to count to a five turns by adding one more value to the cycle, the counter could e used to count up and down to five for the seven-segment display task. It would although need a decoder to change the values to the binary one which are used in the seven segment display.
When constructing the prototypes on EWB it was easy to find the components and place them on the screen the ability to add extra inputs to the gates made life a lot easier when coming to see where the inputs of the circuit were going and stopped all the wire becoming one big mass. The EWB program although did not make it clear how to use the ports on the seven segment display or the word generator. The help on this topic was rather poor and not very user friendly. The other thing I found irritating was the way when clipping wires together they did not connect to the wire you wanted but the next one closest, this could cause problems if not noticed when testing a circuit. To overcome this issue I would move the wires further apart, however sometimes they would revert to a shorter length which would then merge with other wires on the screen turning white blending in with the background. In general the tasks would work well and efficiently once working and were relatively easy to construct and were just time consuming especially in the construction of the real prototypes.
Reference

John M Yarbrough, 1997, Digital Logic Applications and Designs, PWS Publishing Company, ISBN 0-314-06675-6,
Appendix

Appendix a

Appendix b

The circuit using real components to implement c and e LED’s.

[image: image1.png]W

]

1l
o 1A VCC e
S BV e
oA ey 2
2y SA -
5434 SY R
S 3Y 4A 2
T GND 4 |2
7405
1A vee .
1B 4B 12
Sty 46 R
ea 4y B
S~ 2B GB[2
ey GA 2
o —TGND 3V 2
7432
I A vee
1B 4B 12
Sty 46 R
ea 4y B
S~ 2B GB[2
ey GA 2
o —TGND 3V 2

Appendix c

The seven segment display circuit using multiplexers instead of logic gates.
[image: image2.png]16 Ve (e
B 26

e e

ic2 ec3 -2

aca -2

ico ect -
u

g

Appendix d

Appendix e

Appendix f

Appendix g

Appendix h

� EMBED Excel.Sheet.8 ���

[image: image4.wmf]Upper Case

inputs

Lower Case

outputs

0

Low

1

High

d

don't care

Key to Truth Tables and K

Maps

_1239195060.xls
Sheet1

		

		Number		A		B		C		a		b		c		d		e		f		g				Key to Truth Tables and K Maps

		0		0		0		0		1		1		1		1		1		1		0

		1		0		0		1		0		1		1		0		0		0		0				Upper Case				inputs

		2		0		1		0		1		1		0		1		1		0		1				Lower Case				outputs

		3		0		1		1		1		1		1		1		0		0		1				0				Low

		4		1		0		0		0		1		1		0		0		1		1				1				High

		5		1		0		1		1		0		1		1		0		1		1				d				don't care

		6		1		1		0		d		d		d		d		d		d		d

		7		1		1		1		d		d		d		d		d		d		d

Sheet2

		

Sheet3

		

